Reg. No. : \square

Question Paper Code : 20783

B.E./B.Tech. DEGREE EXAMINATIONS, APRIL/MAY 2020
 Fourth Semester
 Mechanical Engineering
 MA 6452 - STATISTICS AND NUMERICAL METHODS

(Common to Fourth Semester Automobile Engineering, Mechatronics Engineering and Fifth Semester for Mechanical Engineering (Sandwich)
(Regulations 2013)
Time : Three Hours
Maximum : 100 Marks
Use of Statistical tables is permitted.
Answer ALL questions.
PART - A
(10×2=20 Marks)

1. What are the expected frequencies of 2×2 contingency table	a	b
c	d	?
2. A standard sample of 200 tins of coconut oil gave an average weight of 4.95 kgs with a standard deviation of 0.21 kg . Do we accept that the net weight is 5 kgs per tin at 5% level of significance?
3. What do you understand by design of an experiment ?
4. What are the basic principles of the design of experiments ?
5. Mention the order and condition for the convergence of Newton-Raphson method.
6. What is the procedure of Gauss-Jordan method?
7. Give the Newton's backward difference table for
```
x: 0
y: -1 lllll
```

8. Compare Trapezoidal rule with Simpson's $\frac{1}{3}$ rule.
9. Find $\mathrm{y}(0.01)$ by using Euler's method, given that $\frac{\mathrm{dy}}{\mathrm{dx}}=-\mathrm{y}, \mathrm{y}(0)=1$.
10. Write the finite difference approximation for the equation $\frac{d^{2} y}{d x^{2}}=x+y$.
PART - B
(5×16=80 Marks)
11. a) i) Fit a binomial distribution for the following data and also test the goodness of fit.

$\mathbf{X}:$	0	1	2	3	4	5	6	Total
$\mathbf{F}(\mathbf{X}):$	5	18	28	12	7	6	4	80

ii) The mean value of a random sample of 60 items was found to be 145 , with a standard deviation of 40 . Find the 95% confidence limits for the population mean. What size of the sample is required to estimate the population mean within 5 of its actual value with 95% or more confidence, using the sample mean?
(OR)
b) i) Test made on the breaking strength of 10 pieces of a metal gave the following results $578,572,570,568,572,570,570,572,596$ and 584 kg . Test if the mean breaking strength of the wire can be assumed as 577 kg .
ii) A group of 10 rats fed on $\operatorname{diet} \mathrm{A}$ and another group of 8 rats fed on $\operatorname{diet} \mathrm{B}$ recorded the following increase in weight :

Diet A :	5	6	8	1	12	4	3	9	6	10
Diet B :	2	3	6	8	10	1	2	8		

Show that the estimates of the population variance from the samples are not significantly different.
12. a) Three varieties of coal were analysed by 4 chemists and the ash content is tabulated here, perform an analysis of variance.

		Chemists			
		A	B	C	D
Coal	I	8	5	5	7
	II	7	6	4	4
	III	3	6	5	4

(OR)
b) The result of an RBD experiment on 3 blocks with 4 treatments A, B, C, D are tabulated here. Carry out an analysis of variance.

Blocks	Treatment effects			
I	A36	D35	C21	B36
II	D32	B29	A28	C31
III	B28	C29	D29	A26

13. a) i) Using Gauss-Seidel method solve the system of the following equations correct to a decimal places.
$10 \mathrm{x}_{1}-2 \mathrm{x}_{2}-\mathrm{x}_{3}-\mathrm{x}_{4}=3$
$-2 x_{1}+10 x_{2}-x_{3}-x_{4}=15$
$-x_{1}-x_{2}+10 x_{3}-2 x_{4}=27$
$-\mathrm{x}_{1}-\mathrm{x}_{2}-2 \mathrm{x}_{3}+10 \mathrm{x}_{4}=-9$.
ii) Find the inverse of the matrix
$(\mathrm{OR})$$\left(\begin{array}{lll}2 & 1 & 1 \\ 3 & 2 & 3 \\ 1 & 4 & 9\end{array}\right)$ using Gauss Jordan method.
b) i) Solve the system of the following equations using Gauss Jordan method correct to two decimal places.
$2 \mathrm{x}_{1}+2 \mathrm{x}_{2}-\mathrm{x}_{3}+\mathrm{x}_{4}=4$
$4 x_{1}+3 x_{2}-x_{3}+2 x_{4}=6$
$8 \mathrm{x}_{1}+5 \mathrm{x}_{2}-3 \mathrm{x}_{3}+4 \mathrm{x}_{4}=12$
$3 \mathrm{x}_{1}+3 \mathrm{x}_{2}-2 \mathrm{x}_{3}+2 \mathrm{x}_{4}=6$.
ii) Determine by Power method the largest eigen value and the
corresponding eigen vector of the matrix $\left(\begin{array}{ccc}1 & 3 & -1 \\ 3 & 2 & 4 \\ -1 & 4 & 10\end{array}\right)$.
Given :
14. a) i) Given :

$\mathbf{x}:$	0	2	3	4	7	9
$\mathbf{y}:$	4	26	58	112	466	922

Find $y(10), y^{\prime}(6)$ using Newton's divided difference formula.
ii) Evaluate the integral $\mathrm{I}=\int_{0}^{1} \frac{\mathrm{dx}}{1+\mathrm{x}^{2}}$ using Simpson's $\frac{1}{3}$ rule by taking $\mathrm{h}=1 / 4$.
b) i) Evaluate $\int_{1}^{2} \frac{\mathrm{dx}}{1+\mathrm{x}^{2}}$ taking $\mathrm{h}=.2$ using trapezoidal rule.
ii) Given :

$\mathbf{x}:$	140	150	160	170	180
$\mathbf{y}:$	3.685	4.854	6.302	8.076	10.225

Find $y(175)$.
15. a) Given $\frac{d y}{d x}=x y+y^{2}, y(0)=1, y(0.1)=1.1169, y(0.2)=1.2773$, find
i) $y(0.3)$ by Runge-Kutta method of fourth order and
ii) $\mathrm{y}(0.4)$ by Milne's method.
(OR)
b)

